Use of AI Techniques for Residential Fire Detection in Wireless Sensor Networks

نویسندگان

  • Majid Bahrepour
  • Nirvana Meratnia
  • Paul J. M. Havinga
چکیده

Early residential fire detection is important for prompt extinguishing and reducing damages and life losses. To detect fire, one or a combination of sensors and a detection algorithm are needed. The sensors might be part of a wireless sensor network (WSN) or work independently. The previous research in the area of fire detection using WSN has paid little or no attention to investigate the optimal set of sensors as well as use of learning mechanisms and Artificial Intelligence (AI) techniques. They have only made some assumptions on what might be considered as appropriate sensor or an arbitrary AI technique has been used. By closing the gap between traditional fire detection techniques and modern wireless sensor network capabilities, in this paper we present a guideline on choosing the most optimal sensor combinations for accurate residential fire detection. Additionally, applicability of a feed forward neural network (FFNN) and Naïve Bayes Classifier is investigated and results in terms of detection rate and computational complexity are analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Automatic Fire Detection: a Survey from Wireless Sensor Network Perspective

Automatic fire detection is important for early detection and promptly extinguishing fire. There are ample studies investigating the best sensor combinations and appropriate techniques for early fire detection. In the previous studies fire detection has either been considered as an application of a certain field (e.g., event detection for wireless sensor networks) or the main concern for which ...

متن کامل

Random Key Pre-Distribution Techniques against Sybil Attacks

Sybil attacks pose a serious threat for Wireless Sensor Networks (WSN) security. They can create problems in routing, voting schemes, decision making, distributed storage and sensor re-programming. In a Sybil attack, the attacker masquerades as multiple sensor identities that are actually controlled by one or a few existing attacker nodes. Sybil identities are fabricated out of stolen keys, obt...

متن کامل

EIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks

Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...

متن کامل

Routing Hole Handling Techniques for Wireless Sensor Networks: A Review

A Wireless Sensor Network consists of several tiny devices which have the capability to sense and compute the environmental phenomenon. These sensor nodes are deployed in remote areas without any physical protections. A Wireless Sensor Network can have various types of anomalies due to some random deployment of nodes, obstruction and physical destructions. These anomalies can diminish the sensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009